learnohub
Question:
Solve : (i) (a-b)x (a b)y=a2 -2ab –b2 (a b)(x y)=a2 b2 (ii) ax by – (a-b) = 0 bx – ay – (a b) =0
Answer:

Given,

1.  (a - b)x +  (a + b)y = a2 - 2ab - b2  .........1

     (a +  b)(x + y) = a2 - b2

=> (a +  b)x + (a +  b)y = a2 - b2 .............2

Subtract 1 - 2, we get

=> {(a - b)x +  (a + b)y} - {(a +  b)x + (a +  b)y} = {a2 - 2ab - b2 } - {a2 - b2 }

=> (a - b)x +  (a + b)y - (a +  b)x - (a +  b)y = a2 - 2ab - b2 - a2 - b2

=> (a - b)x - (a + b)x = 2ab - 2b2

=> ax - bx - ax - bx = 2ab - 2b2

=> -2bx = 2b(a - b)

=> -x = a - b

=> x = -(a - b)

=> x = b - a

From equation 1, we get

=> (a - b)*(b - a) +  (a + b)y = a2 - 2ab - b2

=> -(a - b)*(a - b) +  (a + b)y = a2 - 2ab - b2

=> (a - b)2 +  (a + b)y = a2 - 2ab - b2

=> a2 - 2ab + b2 + (a + b)y = a2 - 2ab - b2

=> (a + b)y = a2 - 2ab - b2 - (a2 - 2ab + b2 )

=> (a + b)y = a2 - 2ab - b2 - a2 + 2ab - b2

=> (a + b)y = a2 - b2 - a2 - b2

=> (a + b)y = 2a2 - 2b2

=> (a + b)y = 2(a - b)*(a + b)

=> y = 2(a - b)

So, x = b - a, y = 2(a - b)

2. ax + by - (a - b) = 0   

   ax + by = (a - b) ...............1

   bx – ay - (a + b) = 0  

   bx – ay = (a + b) ...............2

Multiply equation by a and equation 2 by b and then add, we get

      a2 x + aby + b2 x – aby = a2 - ab + ab + b2

=> a2 x + b2 x = a2 + b2

=> x(a2 + b2 ) = a2 + b2

=> x = (a2 + b2 )/(a2 + b2 )

=> x = 1

From equation 1, we get

     a + by = (a - b)

=> by = a - b - a

=> by = -b

=> y = -b/b

=> y = -1

So, x = 1, y = -1

Not what you are looking for? Go ahead and submit the question, we will get back to you.

learnohub

Classes

  • Class 4
  • Class 5
  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • ICSE 6
  • ICSE 7
  • ICSE 8
  • ICSE 9
  • ICSE 10
  • NEET
  • JEE

YouTube Channels

  • LearnoHub Class 11,12
  • LearnoHub Class 9,10
  • LearnoHub Class 6,7,8
  • LearnoHub Facts
  • LearnoHub Kids

Overview

  • FAQs
  • Privacy Policy
  • Terms & Conditions
  • About Us
  • NGO School
  • Contribute
  • Jobs @ LearnoHub
  • Success Stories
© Learnohub 2025.