

JEE Mathematics | Binomial Theorem | Notes

JEE - Mathematics

www.learnohub.com

www.learnohub.com

JEE Mathematics | Binomial Theorem | Notes

Binomial Theorem Revise Notes

Binomial Theorem

We know how to find the squares and cubes of binomials like $a + b$ and $a - b$. E.g. $(a+b)^2$, $(a-b)^3$ etc. However, for higher powers calculation becomes difficult. This difficulty was overcome by a theorem known as binomial theorem. It gives an easier way to expand $(a + b)^n$, where n is an integer or a rational number.

$$
(a + b)^n = {}^nC_0 a^n + {}^nC_1 a^{n-1} b + {}^nC_2 a^{n-2} b^2 + \dots + {}^nC_{n-1} a b^{n-1} + {}^nC_n b^n
$$

$$
(a + b)^n = \sum_{k=0}^n {}^nC_k a^{n-k} b^k
$$
 ExamFear.com

Points to note in Binomial Theorem:

Total number of terms in expansion = index count +1. g. expansion of $(a + b)^2$, has 3 terms.

Powers of the first quantity 'a' go on decreasing by 1 whereas the powers of the second quantity 'b' increase by 1, in the successive terms.

In each term of the expansion, the sum of the indices of a and b is the same and is equal to the index of $a + b$.

<https://www.learnohub.com/free-video-lessons/jee>

Numerical:

Compute $(98)^5$

Solution:

 $(98)^{5} = (100-2)^{5} = {}^{5}C_{0} (100)^{5} - {}^{5}C_{1} (100)^{4} \cdot 2 + {}^{5}C_{2} (100)^{3} 2^{2} - {}^{5}C_{3} (100)^{2} (2)^{3} + {}^{5}C_{4}$ $(100) (2)^{4} - {^{5}}C_5 (2)^{5}$

 $= 10000000000 - 5 \times 100000000 \times 2 + 10 \times 1000000 \times 4 - 10 \times 10000 \times 8 + 5 \times$ $100 \times 16 - 32$

 $= 10040008000 - 1000800032 = 9039207968$

General Term

General term in the expansion of $(a+b)^n$ is $\frac{1}{1+r+1} = {}^nC_r$ a^{n-r} b^r

Numerical:

Find the 4th term in the expansion of $(x - 2y)12$

Solution:

Putting $r=3, n=12, a =x \& b=-2y$ in this formula the formula,

$$
T_{r+1} = {}^{n}C_{r} \quad a^{n-r} b^{r}
$$

 $T_4 = {}^{12}C_3 (x) {}^{9} (-2y) {}^{3}$

Or T₄ = -1760 $x^9 y^3$

Middle Term

Middle term in the expansion of $(a+b)^n$

Case 1: "n" is even, Total term is expansion : n+1 à Odd

Middle term = $\left(\frac{n}{2}\right)$ $\frac{n}{2}$ +1)th

We can now find the middle term using the general term formula,

 $T_{r+1} = {}^{n}C_{r}$ a^{n-r} b^r

Case 2: "n" is odd, total term in expansion: n+1 à Even

There will be two Middle terms = $\left(\frac{n+1}{2}\right)^{\text{th}}$ & $\left(\frac{n+1}{2} + 1\right)^{\text{th}}$ terms

We can now find the middle term using the general term formula

 $T_{r+1} = {}^{n}C_{r}$ a^{n-r} b^r

Numerical:

Find the middle terms in the expansions of $(\frac{x}{3} + 9y)^{10}$

Solution:

In this case, $a=\frac{\pi}{3}$, b=9y & n = 10

Since n=10, number of terms in the expansion will be 11.

Middle terms will be $\frac{11}{2}$ = 6

To find T_6 , we need to put r=5 in the formula

 $T_{r+1} = {}^{n}C_{r}$ a^{n-r} b^r

 $T_{5+1} = {}^{10}C_5 \left(\frac{x}{2} \right)$ $\frac{x}{3}$)¹⁰⁻⁵ (9y)⁵

Or T₆ = $61236x^5y^5$

Greatest Coefficient and Term:

Greatest Coefficient =

\n
$$
\begin{cases}\n {^{n}C_{n/2}}' & \text{if } n \text{ is even} \\
{^{n}C_{(n-1)/2}} \text{ and } {^{n}C_{(n+1)/2}}', \text{if } n \text{ is odd}\n \end{cases}
$$

To find the numerically greatest term in the expansion of $(x + a)^n$:

Calculate, m = $\frac{(\text{m} + \text{m})}{1 + |\frac{\text{m}}{\text{m}}|}$ $\frac{a}{x}$

Case 1: If m \in Integer, then T_m and T_{m+1} are the greatest terms and both are numerically equal.

Case 2: If m \notin Integer, then $T_{[m]+1}$ is the greatest term, where [.] denotes the greatest integer function.

Numerical:

Find numerically greatest term in the expansion of $(2 + 3x)^8$, when $x = \frac{2}{3}$.

Solution:

Here, m = $1+\left|\frac{3\times\frac{2}{3}}{3}\right|$ $\overline{\mathbf{3}}$ $\frac{3}{2}$ $=\frac{9}{2}$ $\frac{2}{2}$ = 4.5

Since 4.5 is an integer, so $T_{[4.5]+1} = T_5$ is numerically greatest term.

$$
T_5 = {^{8}}C_4(2)^4(3x)^4 = {^{8}}C_4(2)^4\left(3 \times \frac{2}{3}\right)^4 = {^{8}}C_4(2)^4(2)^4 = {^{8}}C_4(2)^8
$$

www.learnohub.com

Divisibility and Remainder:

Divisibility:

- (i) $(x^n a^n)$ is divisible by $(x a)$, $\forall n \in N$.
- (ii) $(x^{n} + a^{n})$ is divisible by $(x + a)$, \forall n \in Only odd natural numbers.

Finding Remainder using Binomial Theorem:

If a, p, n and r positive integers, then to find the remainder when a^{pn+r} is divided by b, we adjust power of a to a^{pn+r} which is very close to b, say with difference 2 i.e. $b \pm 2$.

Also, the remainder is always positive. When number of the type $5n - 2$ is divided by 5, then we have

5) $5n - 2(n)$

5n

```
\overline{-2}\overline{a}
```
We can write $-2 = -2 - 3 + 3 = -5 + 3$

Or $\frac{5n-2}{5} = \frac{5}{7}$ $\frac{5+5}{5}$ = n – 1 + $\frac{5}{5}$

Hence, the remainder is 3.

Important Results:

(i)
$$
2 \le \left(1 + \frac{1}{n}\right)^n < 3, n \ge 1, n \in N
$$

JEE Mathematics | Binomial Theorem | Notes

(ii) If
$$
n > 6
$$
, then $\left(\frac{n}{3}\right)^n < n! < \left(\frac{n}{2}\right)^n$

Numerical:

If 7^{103} is divided by 25, find the remainder.

Solution:

We have,
$$
7^{103} = 7.7^{102} = 7.(7^2)^{51} = 7.(49)^{51} = 7.(50 - 1)^{51}
$$

 $= 7[(50)^{51} - {^{51}C_1 (50)^{50}} + {^{51}C_2 (50)^4}$

$$
=7[(50)^{51} - {^{51}C_1}(50)^{50} + {^{51}C_2}(50)^{49} - \cdots + {^{51}C_{50}}(50)] - 7 - 18 + 18
$$

- $= 7[50k] 25 + 18$, where k is an integer.
- $= 25[14k 1] + 18$
- $= 25p + 18$ [where p is an integer]
- Now, $\frac{7^1}{2}$ $\frac{1}{25} = p + \frac{16}{25}$

Hence, the remainder is 18.

Sum of Binomial Coefficients

In the binomial expansion of $(1 + x)^n$, let us denote the coefficients nC_0 , ${}^{n}C_{1}$, ${}^{n}C_{2}$,, ${}^{n}C_{r}$,, ${}^{n}C_{n}$ by C_{0} , C_{1} , C_{2} ,, C_{r} ,, C_{n} , respectively.

$$
(1+x)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + \ldots + C_nx^n.
$$

Putting $x = 1$, we get:

$$
C_0 + C_1 + C_2 + C_3 + \ldots + C_n = 2^n
$$

Putting $x = -1$, we get:

 C_0 - C_1 + C_2 - C_3 + C_4 - C_5 + = 0

 $C_1 + C_3 + C_5 + \ldots = C_0 + C_2 + C_4 + \ldots = 2^n$

Use of Differentiation:

This method is applied only when numerical occur as the product of the binomial coefficients. $(1 + x)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + ... + C_nx^n$.

Solution:

$$
(1+x)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + \ldots + C_nx^n.
$$

(i) If last term of the series leaving the plus or minus sign is m, then divide m by n. If q is quotient and r is the remainder.

Then replace x by x^q in the given series and multiplying both sides of the expression by x^r .

(ii) Now, differentiate both sides w.r.t. x and put $x = 1$ or -1 or i, etc according the given series.

(iii) If the product of two numerical or three numerical, then differentiate twice or thrice accordingly.

Use of Integration:

This method is applied only when the numerical occur as the denominator of the binomial coefficient.

Solution:

$$
(1+x)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + \ldots + C_nx^n.
$$

Integrate both sides between suitable limits which gives the required series.

(i) If the sum contains C_0 , C_1 , C_2 , C_3 , ..., C_n with all positive signs, then integrate between limits 0 to 1.

(ii) If the sum contains alternate signs (i.e. +, -), then integrate between limits -1 and 0.

Numerical:

Prove that $C_1 + 2C_2 + 3C_3 + \ldots + nC_n = n$. 2^{n-1} .

Solution:

Here, last term of $C_1 + 2C_2 + 3C_3 + \ldots + nC_n$ is n C_n i.e. n and with positive sign.

Then, $n = n.1 + 0$

Here, $q = 1$ and $r = 0$.

 $(1 + x)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + \dots + C_nx^n$

Differentiating both sides w.r.t. x, we get

$$
n(1+x)^{n-1} = 0 + C_1 + 2C_2x + 3C_3x^2 + \ldots + nC_nx^{n-1}
$$

Putting $x = 1$, we get:

n. 2^{n-1} = C₁ + 2C₂ + 3C₃ + + nC

www.learnohub.com

or C_1 + 2 C_2 + 3 C_3 + + n C_n = n. 2ⁿ

Numerical:

Prove that
$$
C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}
$$
.

Solution:

We have $(1 + x)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + ... + C_nx^n$

Integrating both the sides within limits 0 to 1, then we get:

$$
\int_0^1 (1+x)^n dx = \int_0^1 (C_0 + C_1x + C_2x^2 + C_3x^3 + \dots + C_nx^n) dx
$$

$$
\left[\frac{(1+x)^{n+1}}{n+1} \right]_0^1 = \left[C_0x + \frac{C_1x^2}{2} + \frac{C_2x^3}{3} + \dots + \frac{C_nx^{n+1}}{n+1} \right]_0^1
$$

$$
\frac{2^{n+1}-1}{n+1} = C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1}
$$

$$
C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}
$$

Binomial Expansion for Negative and Fractional Indices

For all $n \in Q$ (Rational Numbers)

$$
(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots
$$

Numerical:

Write the expansion for $(1-x)^{-1}$.

Solution:

$$
(1-x)^{-1} = 1 + (-1)(-x) + \frac{-1(-1-1)}{2!}(-x)^2 + \frac{-1(-1-1)(-1-2)}{3!}(-x)^3 + \dots
$$

$$
(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots
$$

Numerical:

Find the third term in the expansion of $(1 + 2x)^{1/2}$.

Solution:

We know that
$$
(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots
$$

\nNow, $T_3 = \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}(2x)^2$
\n $T_3 = -\frac{1}{2}(x)^2$

15

Multinomial Theorem

If n is a positive integer and $x_1, x_2, x_3, \ldots, x_k \in \mathbb{C}$, then

$$
(x_1 + x_2 + x_3 + \ldots + x_k)^n = \sum \frac{n!}{(\alpha_1!) (\alpha_2!) (\alpha_3!) \ldots (\alpha_k!)} x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3} \ldots x_k^{\alpha_k}
$$

where, α_1 , α_2 , α_3 , ..., α_k are all non-negative integers such that

 $\alpha_1 + \alpha_2 + \alpha_3 + \ldots + \alpha_k = n$.

Coefficient of $x_1^{\alpha_1}x_2^{\alpha_2}x_3^{\alpha_3}\dots x_k^{\alpha_k}$ in the expansion of

 $(x_1 + x_2 + x_3 + \ldots + x_k)^n$ is $\sum \frac{n}{(x_1 + x_2 + x_3)^{(n-1)}(x_1 + x_2 + x_3)^n}$ $\overline{(\ }$

Numerical:

Find the coefficient of $w^4x^3y^2z$ in the expansion of $(w-x+y-z)^{10}$.

Solution:

The coefficient of $w^4x^3y^2z$ in the expansion of $(w-x+y-z)^{10}$ is

